

EnduriFuse^{**}

EnduriFuse[™] is allograft bone containing three key elements ideal for bone formation

- An osteoconductive three-dimensional scaffold with cortical and cancellous components.
- A demineralized bone scaffold with osteoinductive potential.¹
- Viable spine-derived cells to support osteogenesis.

Particle Size Makes a Difference

EnduriFuse provides an osteoconductive bone scaffold composed of demineralized cortical and mineralized cortical and cancellous bone. The optimized microparticulate bone scaffold size range of **100-300 µm** has been shown to induce simultaneous activity of osteoclasts and osteoblasts, supporting rapid bone formation in bone defects.²

Figure 1: 100-300 µm optimized particle size for bone regeneration has been shown to support direct ossification, with results comparable to autograft.²

A Differentiated Technology

Proper preservation of cellular allografts requires strict adherence to recovery and processing protocols. In the EnduriFuse advanced bone matrix, viable spine-derived cells are collected from the vertebral body region of the donor and preserved with the use of a novel **DMSO-free cryoprotectant**, which uses an extracellular protective coating on the cell to prevent crack propagation and membrane lysis¹ (Figure 2). Industry standard DMSO penetrates the cell and prevents crystal formation from within. At room temperature, DMSO-based cryoprotectants raise concerns about cytotoxicity and negative effects on cell differentiation.^{3,4,5}

The patented and proprietary cryoprotectant is a differentiated technology. This protective coating utilized to preserve EnduriFuse provides distinct advantages over DMSO-based cryoprotectant technology used in competitive products. DMSO-based cryoprotectant requires multiple rinsing and decanting steps which may result in the loss of cells that remain in the rinsing solution.

This innovative cryoprotectant provides a surgical procedure advantage over other cryoprotectants containing DMSO. EnduriFuse advanced bone matrix experiences minimal cell loss and retains, on average, over 80% cell viability after thaw¹, may be used up to four hours after thawing and can be stored for up to three years at or below -65°C.

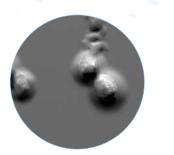


Figure 2*: Cells protected with DMSO-free cryoprotectant prevent crystalline damage (previously frozen)

*Image captured by SEM

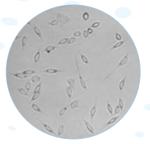


Figure 3: Cytotoxicity assay showing higher number of viable cells in media containing up to 10% DMSO-free cryoprotectant (left) compared to media containing 2.5% DMSO (right) after 48 hours incubation


A Viable Structural Allograft

The cell component of EnduriFuse is collected from the vertebral body region of the donor. Strict donor criteria and quality control processes, including cell count and viability, ensure a favorable safety profile and support a viable cell population for osteogenic supplementation of the allograft bone matrix.

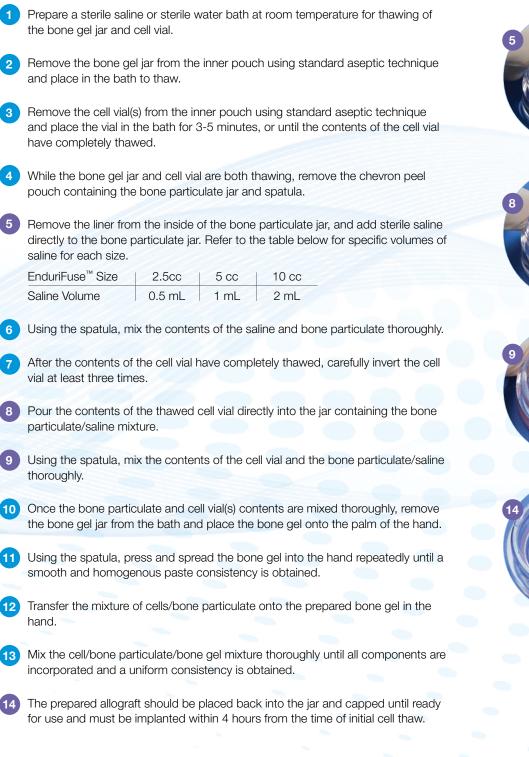
Operating Room Ease of Use

- No rinsing or decanting steps required
- Average cell viability consistently exceeds 80% post-thaw¹
- Minimum of 150,000 viable cells per cc of allograft¹
- · Four-hour working window for implantation after thaw without loss of cell viability

A Growing Body of Evidence

Figure 4: A 54-year-old woman underwent treatment for radiculopathy secondary to disc herniation. Bridging bone is apparent at the L5-S1 intervertebral level.

Advantages of EnduriFuse Advanced Bone Matrix:


- An allogeneic, osteoconductive scaffold with osteoinductive potential.¹
- A viable cell population to support osteogenic processes.
- A proprietary DMSO-free cryoprotectant that allows for consistent delivery of viable allograft to the patient.

Product Number	Description	Size
EFCBM0250	EnduriFuse, Advanced Bone Matrix	2.5cc
EFCBM0500	EnduriFuse, Advanced Bone Matrix	5cc
EFCBM1000	EnduriFuse, Advanced Bone Matrix	10cc

EnduriFuse[™] Advanced Bone Matrix

Preparation Guide

Note: Please refer to the EnduriFuse package insert for complete allograft preparation instructions and any additional product information.

1. Data on file at Vivex Biologics, Inc.

2. Malinin, T.I., et. al., Particulate bone allograft incorporation in regeneration of osseous defects; importance of particle sizes. The Open Orthopeadics Journal, 2007. 1:19-24.

3. Best, Benjamin. P. Cryprotectant Toxicity: Facts, Issues, and Questions. Rejevenation Research, 2015. Vol. 18, No. 5.

- 4. Renzi, S., et al., Mesenchymal stromal cell cryopreservation. Biopreservation and Biobanking, 2012. 10(3): p. 276-281.
- 5. Asghar, W., et al., Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnology Journal, 2014. 9: p. 895-903.

6. Tally, William C, et al., Transforaminal Lumbar Interbody Fusion with Viable Allograft: 75 Consecutive Cases at 12-Month Follow-Up. International Journal of Spine Surgery, 2018. Vol. 12, No. 1 pp 76-84.

ParametricsMedical

ensuring physicians have the best solutions for their patients

Parametrics Medical has used reasonable efforts to provide accurate and complete information herein, but this information should not be construed as providing clinical advice, dictating reimbursement policy, or as a substitute for the judgment of a health care provider. It is the health care provider's responsibility to determine the appropriate treatment, codes, charges for services, and use of modifiers for services rendered and to submit coverage or reimbursement-related documentation.